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T H E R M O C A P I L L A R Y  F L O W  N E A R  A "COLD C O R N E R "  

I. B .  S e m e n o v a  UDC 532.526 

The velocity field in a neighborhood of the point of contact between the free and solid boundaries 
is studied numerically for the problem of noncrucible zone meltin 9 in a two-dimensional model 
formulation. A distinct Prandtl boundary layer on the solid boundar~ and a Marangoni boundary 
layer on the free boundary and high 9radients of the longitudinal velocity along the free boundary 
in the immediate vicinity of the "cold corner" are observed. It is found for the first time that 
with distance from the solid boundary, the velocity cur~e has a maximum, which is not typical 
of the ordinary flow near the solid boundary. 

In t roduc t ion .  In recent years, problems related to noncrucible zone melting are of great scientific 
and applied interest. The melting can be described as follows: a liquid zone is formed in a crystal (usually 
of cylindrical shape) which is placed inside a heater. Investigations of these problems can be divided into 
three groups: studies aimed at qualitative analysis of hydrodynamic phenomena [1] and experimental [2] and 
numerical studies. The goal of these investigations is to find the velocity and temperatures fidds over the 
entire flow region [3]. The stability of the liquid zone has been examined in many papers (see, for example, 
[4, 5]). Asymptotic methods of solution have not been developed as yet. In numerical methods of solutions, 
which reflect adequately the situation in the central flow region, difficulties arise in work with corner regions. 
This is due to the fact that the liquid acceleration along the free boundary due to the Marangoni effect and 
the subsequent deceleration on the solid boundary cause fluctuations of the surface velocity near the "cold" 
walls. One method of overcoming these difficulties is proposed in [3], and another is considered in the present 
paper. The problem is investigated in a two-dimensional formulation: the Moffatt asymptotic relation [6] is 
used in the immediate vicinity of the contact point, the Prandtl-Batchelor scheme [7] in the flow core, and 
numerical calculation in the intermediate region. 

1. Formula t ion  of t h e  Prob lem.  Let the liquid phase occupy a rectangular region bounded by two 
solid rectilinear parallel boundaries between the solid and liquid phases and two rectilinear free boundaries 
between the liquid and the gas that are orthogonal to the former. The liquid is assumed to be viscous and 
incompressible and the flow is steady. A constant temperature gradient A, treated as a parameter, is specified 
on the free boundaries. 

The characteristic liquid-flow velocity can he evaluated [8] by the formula 

U - (hu) 1/3 (AI~rTI~ 2/a, 
~ ,pv  / 

where h is the characteristic length of the melting zone (the height of the rectangle), v is the kinematic 
viscosity coefficient, ~T is the coefficient in the linear dependence of the surface-tension coefficient on the 
temperature, and p is the density. 

If the temperature gradient A is rather high and the above-mentioned physical parameters correspond 
to a melted semiconductor, the velocity reaches several centimeters per second. This is liquid flow at large 
Reynolds numbers, because, by definition, Re = Uh/u. 
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Fig. 1. Flow region: 1) solid boundary; 2) boundary 
of radius Rm (the Moffatt solution is applicable on 
it); 3) free boundary; 4) boundary of radius Rp (the 
Prandtl-Batchelor solution is applicable on it). 

Thus, assuming that all streamlines in the rectangular region are closed, it is reasonable to use 
the Prandtl-Batchelor scheme [7]. However, immediately in the "cold" corner this scheme is inappropriate. 
Assuming that interesting effects occur in close proximity to the corner, we distinguish a sector in the corner 
and use its radius as a new characteristic dimension. Assuming that the attachment condition on the solid 
boundary (see Sec. 2) and the velocity-continuity condition are satisfied, for the liquid flow in this sector (the 
radius is small) we can use the Stokes approximation [9]: 

Vp-Av = 0, V.v=0. 

Here p is the pressure and v is the velocity vector. In this case, it is reasonable to use the Moffatt solution [6]. 
The region of investigation is chosen so that the Moffatt solution is valid on one boundary of the 

circular sector, the Prandtl-Batchelor solution is valid on the other boundary, the third boundary is free, and 
the fourth boundary is solid (Fig. I). 

In the region obtained, we solve complete Navier-Stokes equations written in polar coordinates (r, ~), 
in terms of the vorticity w and stream function ~b: 

k r2 + + r2 0 2/+ Or 
o~2,h la~h I a2ch 
Or 2 + r~'~ + r~'a~ --~" = - ~ "  

of B o u n d a r y  Condi t ions .  On the solid immovable boundary 1, the attachment 2. Derivation 
condition [8] 

~'-0, 

On the free boundary 3, the kinematic condition [8] 

= 0,  = 0,  (2 .1 )  

where u and v are the velocity components along the x and y axes, respectively, is written in terms of the 
stream function as 

= o. (2.2) 

in terms of the stream function has the form 

u = 0  (2.3) 

= 0. (2.4) 

The dynamic condition is equivalent to two scalar conditions [8]. One of these (the equality of the difference 
between the normal pressure and atmospheric pressure to the capillary pressure) is assumed to be satisfied on 
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the plane free boundary in a first approximation owing to the smallness of the capillary number Ca = ~TA/ao, 
and the second condition should be satisfied: 

�9 �9 = - -  ' . . P = y = p v  + = A I ~ r T I .  (2.5) 2pvs D n p - p o +  c3s 

Here s is a tangent vector, D is the strain tensor, n is the external normal vector to the free surface, p0 =const 
is the average pressure, Pry is the strain-tensor component, cr = ~0 + ~T(T -- To) is the surface tension, 
o0 = const is the average surface tension, T is the temperature, and To =const is the average temperature. 

Equation (2.5) in terms of the vorticity has the form 

AIa'T] 
= - -  (2.6) 

pv 

The boundary 2 is chosen from considerations of applicability of the Moffatt solution, i.e., from the 
condition of smallness of the Reynolds number. For this, in the rectangular region we consider the equations 

at* at* 1 { a2u 02u ~ av av 1 [ 02v O2U ~ 
~ + ~ = + + , + = - ~  p, + + o -pP= vk-O-~z2 Ov 2) u-~z t'-~v vk-ff~z2 Oy 2) 

subject to the following boundary conditions: (2.1) on the solid boundary and (2.3), (2.5), and T = Ay on 
the free boundary. Here p= and p~ are the pressure-gradient components. 

Let V be the velocity increment in the boundary layer and 6 the thickness of the boundary layer. Then, 
from the equations and the boundary conditions we obtain 

pvV V 2 uV 
a = A I ( r T I '  T =  o ~ '  

wlmnee we can estimate the thickness of the Marangoni boundary layer: 

( pv2h ,~113 

a = ~AIoTI) 
From the estimate of the Reynolds number through the estimate of the velocity increment V, 

(Al~ 213, 1/3 AIoTI 2p 
j (-7;) ' 

we can determine the r~lius of the boundary 2 [Re : (V_rr << 1]: 

1 ( v2p ~2/3 
<< ~ ~2A--~/ 

(Rm is of the order of 3 .10  -s  cm). 
We turn to constructing a Moffatt-type solution. In the plane ease, the solution of the equation 

AA~ = 0, which is equiwlent to the Stokes system, is sought in form of the series 
OO 

~b = ~ rk gk(%o). (2.7) 
k=l 

Substituting solution (2.7) into known formulas [9] for the strain-tensor components, we obtain 

( o~ 1 1 a"~.,~ 

O~o 2 Or z + r ~ r  ) : puCrk-2 g~(~~ - rk-2 gk(~)k(k - 1) + krk-Zgt(~o)), (2.8) 

1 0 2 ~  
e~o~, = --P + 2pv( 

1 
r OrO~o + -~ -0-~) = -p  + 2PV(--krk-2gk(cP) + rk-2gk(~P))' 

where Prr, Pr , ,  and P,~, are the strain-tensor components. From (2.8) it is evident that terms with k < 2 
give infinite stresses as r --* 0. This is impossible in the present problem, and, hence, only terms with k t> 2 
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are retained. The solution is sought in the form gt(~) = B sin k~ + C cos k~ + D sin(k - 2)~0 + E cos(k - 2)~. 
The stream function aad vorticity should satisfy boundary conditions (2.2), (2.4), and (2.6), which give the 
following conditions for 9k(7~): 

g~ = alarl  for k=2, g~k2j=0 for 
pv 

k#2. 

As a result, we obtain a system of four equations for four unknown coefficients B, C, D, and E. These 
equations are compatible for integer values of k, as shown by solution of the equation 

klr k,r 
k2(k - 2)sin -~-cos(k - 2)2 + k( k - 2) 2 cos -~-sin(k - 2)2 

lr k~r klr 
= P sin(k - cos T + (k - 2) 3 cos(k - 2 ) 2  sin 

T '  

obtained by setting to zero the determinant of the corresponding matrix. The presence of real solutions ensures 
the absence of a periodic solution structure of the type of a chain of eddies. This follows immediately from [6] 
because, in the problem considered, the angle of contact of the solid and free boundaries is 90", which exceeds 
the critical angle of 78 ~ . 

In view of the smallness of r, it is reasonable to ignore all terms with k > 2, and the solution have the 
form 

~b = r2 A[~TI ( l s i n 2 ~ o  -- lcos2~o -- 1 
pv 

Next, taking into account that  w = -A,/; ,  we write the condition for the vort idty as 

Al~rl ( x4 1). . ,  = - 
pv 

On boundary 4, the Prandtl-Batchelor [7] solution is assumed to be correct. To construct it in the 
rectangular region specified above, we solve the equation 

A~ - -  - - N  (2.9) 

subject to the boundary condition ~ - 0. Here 12 is the constant vorticity treated as the second parameter of 
the problem (the first parameter  is the temperature gradient A). The solution of the inhomogenous equation 
(2.9) is sought as the sum of two solutions ~b = ~b + ~: the partial solution ~ = (12 /2 )z ( / -  z) for the 
inhomogenous equation (2.9) subject to the boundary conditions ~ -- 0 for z -" 0 and z - I and the general 
solution for the homogeneous equation A@ - 0 subject to the boundary conditions @ -- 0 for z = 0 and 
z = l ,  a n d  @ = - ( f l / 2 ) z ( l  - z )  for y - 0 and y -- h (0 <~ z ~< I). In turn, the homogeneous equation is solved 
by the  method of separation of variables with subsequent expansion into a Fourier series in sinuses, extending 
the function f ( z )  = - ( 1 2 / 2 ) z ( l  - x )  in an uneven manner (to the region - l  ~< z ~< 0, where I is the length of 
the rectangle). This solution is not given herein. Thus, the conditions on boundary 4 have the form 

12 ~o 
w = 1 2 ,  ~b = ~ P ~  cos ~ o ( / - / ~  cos ~o) + Y~ at  sin k ~ / ~  cx~ ~ 

k=l l ' 

where a t = 0 for even k, and 

a t  2 / k  ,sin  1-cosh(k h/t)..k  sin ) 
cosh + sinh(k h/t) smh (2.10) 

for uneven k (P~ denotes the radius of the external boundary of the region for which the Prandtl-Batchelor 
solution is valid). 

Hence, it is obvious that  on boundaries 2--4 conditions exist for both ~b and o~, and on boundary 1 there 
is no condition for ~. The latter can be obtained using the approximate condition of [10], which is based on 
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numerical representation of the condition for w in terms of the condition for ~b using a Taylor series expansion. 
It is easy to see that  in the "upper" corner, i.e., at the point of contact of the 3rd and 4th boundary, the 
conditions for w do not join. It is known, however, that  for thermocapillary-liquid flow at Re >> 1, a Marangoni 
boundary layer is formed on the free boundary. This layer helps to smooth the condition for the "upper" corner 
[8]. A similar situation arises in the "lower" corner, i.e., at the point of contact of the 1st and 4th boundaries, 
where smoothing is performed using a Prandtl  boundary layer. Thus, the problem is completely formulated. 

3. M e t h o d  of  N u m e r i c a l  So lu t i on .  Introduction of polar coordinates made it possible to use a 
rectangular grid to find a numerical solution, which was obtained by a time-like iteration method,  i.e., by 
introduction of fictitious time. We used the Peaceman-Rachford scheme (the equations were split by directions) 
with a "cross" stamp. For the equations in ~b, the difference analog is 

ohn-l'I/2 ~n ~n+I/2 qol n+l12 ~n-l-1/2 
�9 -- 2 2 kj+1 --"wk,j + kj -1  2 n 

ohn+l/2 -- ~n+l/2 n n 
Jr rj Wk,j+l k,j-I ~k+l,j  -- 2 ~ , j  "4- 4/k_l, j 

2hr + h~ ' 

~n+l  -- ~n+1/2 ~n-l-l/2 ,}o/n+l/2 , ~n+l/2 
t ,j  t,j 2 2 t , j+l -- "wt,j  -t- ~t , j -1  

r /2 r j -- r 3 h2 

~ . + i / 2  _ ~ . + i / 2  . , . .+i . + i  - . + i  
t,j+~ t,j-1 wt+ l , . / -  2~bt,j + ~k--l,j 

+ rj 2hr + h~ 

For ~b, the scheme is absolutely stable [11]. 
In the same manner ,  we write the  difference analog of equations for to, in which a counterflow difference 

scheme is used for convective terms [11]. The  scheme is considered conditionally stable. All four equations are 
easily reduced to _ 

. .+I/2 i,. t,,+I/2 . . .+I/2 ~ J t - I j  + At  = 0. 

The  solution is performed by a diagonal-sweep method.  Care should be taken tha t  the  condition of 
diagonal predominance [aj] i> Ibjl + ]cj[ is satisfied. Note that  for ~btnj it always holds. 

To perform this est imate,  in the  program we adjust the  step in the  fictitious t ime �9 in each t ime 
layer to the solution. The  following numerical parameters of a germanium alloy were used: p = 5.571 g/cm3; 
u = L 3 5 . 1 0  -3 cm2/sec; I~TI -- 0.2 g/(sec2.deg); R,n = 10 -T cm; Rp - 0.4 cm; l -- 3 cm; h = 4 cm; 
5 ~ A ~ 10 deg/cm; A]~rTI/(2Opu ) ~ f~ ~ AIoTI/(4pu ) sec -1. By virtue of the  smallness of the kinematic 
viscosity u, it is convenient to perform scaling using Rp as the unit. 

4. C a l c u l a t i o n  R e s u l t s .  For the problem of steady thermocapillary flow of a viscous incompressible 
liquid near the  "cold" corner, we solved complete Navier-Stokes equations in the above-mentioned region 
bounded by the free, solid, and two specially chosen boundaries on which boundary conditions were formulated. 
Analysis of the resulting velocity fields yields a distinct Prandt l  boundary layer on the  solid boundary and 
a distinct Marangoni boundary  layer on the free boundary. In addition, we obtained high gradients of the 
longitudinal velocity along the  free boundary in the immediate  vicinity of the  "cold" angle. This was noted 
in [3] as the main difficulty in work with a "cold" corner. 

Figure 2 shows curves of both  velocity components at the  solid boundary for four small values of z in 
the interval 10-3-10 -2 cm., i.e., at four close distances from the ~cold" corner. 

It is evident from Fig. 2a that  with distance from the solid boundary, there is a maximum,  which is 
untypical of ordinary flow at a solid boundary. This fact has not been described in the  literature. From the 
viewpoint of physics, this phenomenon is similar to the processes occurring in a wall jet  [12], for which the 
velocity curves have a similar shape. 
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Fig. 2. Curves of the velocity components u (a) and v (b) for close distances from the ~cold" 
corner (curves 1-4) at the solid boundary (A = 5 deg/cm and f / =  6.649 sec-1). 
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Fig. 3. Curves of the velocity components (A = 5 deg/cm) at the free boundary, ft = 
6.649 sec -1 (a and b) and near the solid boundary, fZ - 33.245 sec -1 (c); the notation is 
the same as in Fig. 2. 

The velocity curves at the free boundary for four small values of y (in the interval 10-3-10 -2 cm) 
are shown in Fig. 3. Here of interest is the behavior of the velocity component directed parallel to the free 
boundary and having a maximum on the free boundary (Fig. 3b). 

We note that with increase in both the temperature gradient A and the vorticity ft, the modulus of 
the maximum velocity on the free boundary in the indicated region increases. In this case, the qualitative flow 
pattern does not change, as can be seen from Figs. 2a and 3c which give results for one value of the pararneter 
A and two extreme values of the parameter fL 

Conclusion.  The problem considered can be called "too model" because of the assumption of a free 
surface "plane." However, the algorithm of solution applied to this problem is also suitable for the problem of 
a cylindrical free surface under the assumption of axisymmetric flow without swirling. The Moffatt solution 
can be used in studies of the region located in the immediate vicinity of the line of the three-phase contact, 
the Prandtl-Batchelor solution is applicable for the entire flow region, and numerical solution is performed 
for a similarly distinguished region. We note that the Prandtl-Batchelor scheme now implies consideration of 
the equation wt = kr, where k = const (k is a new parameter and w is a single nonzero vortex component). In 
this case, only representations of a~ change in the Prandtl-Batchelor solution (2.10), where Bessel functions 
are used instead of the hyperbolic functions, i.e., in the boundary condition for r on the boundary 4: r = P~. 

The author is grateful to V..V. Pukhnachev for attention to the work and valuable remarks. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 

00818). 
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